
ON THE PAC LEARNABILITY OF DISTORTION-FREE
LANGUAGE MODEL WATERMARKS

ABSTRACT

Distortion-free watermarking schemes for large language models embed water-
marks into sampling randomness rather than token probabilities, achieving invis-
ibility by preserving the exact output distribution of the base model. While such
schemes are undetectable from a single sample, their security against learning-
based adversaries has not been formally characterized. In this work, we provide a
learning-theoretic analysis of distortion-free watermarking by studying the learn-
ability of the induced watermark detector. We focus on cyclic distortion-free
watermarking schemes with alignment-based detectors and prove that the asso-
ciated detector class has low complexity and is PAC learnable from polynomially
many labeled examples, such as detector queries. This result establishes that cyclic
distortion-free watermarks are inherently vulnerable to learning-based attacks, de-
spite their distributional invisibility and robustness to edit-distance perturbations.
By leveraging probabilistic automata-based constructions introduced in Wang &
Shang (2025) and standard cryptographic hardness assumptions, we demonstrate
the existence of distortion-free watermarking schemes that are computationally
hard to PAC learn.

1 INTRODUCTION

The widespread deployment of large language models (LLMs) has intensified the need for reliable
mechanisms to identify machine-generated text. Watermarking has emerged as a promising ap-
proach for addressing concerns of provenance, misuse mitigation, and accountability in generative
systems (Kirchenbauer et al., 2024; Aaronson & Kirchner, 2022). An effective watermark must
satisfy several competing requirements: it should be statistically invisible to human users, robust to
benign post-processing such as editing or paraphrasing, and secure against adversaries attempting to
detect, remove, or spoof the watermark.

Early watermarking schemes for text generation modify the model’s decoding distribution by intro-
ducing a secret bias into token selection. A prominent example is the k-gram–based approach of
Kirchenbauer et al. (2024), which partitions the vocabulary into secret subsets and biases sampling
toward preferred tokens. While such methods enable efficient detection, they necessarily distort
the output distribution of the language model. This distortion makes them vulnerable to statistical
detection and to learning-based attacks that exploit persistent distributional artifacts.

Recent work on distortion-free watermarking addresses this limitation by embedding the watermark
into the sampling randomness rather than the model distribution itself (Kuditipudi et al., 2024).
Using unbiased decoding procedures such as inverse transform sampling or exponential-minimum
sampling, these schemes generate text that is exactly distributed according to the base language
model, achieving information-theoretic invisibility against single-sample statistical tests. Detection
is enabled by introducing secret correlations across tokens and employing alignment-based detec-
tors that are robust to edit-distance perturbations, including insertions, deletions, substitutions, and
cropping.

However, distortion-freeness alone does not guarantee security against stronger adversaries. While
it rules out detection from a single sample, it does not prevent an adversary with access to multiple
watermarked outputs or to the detector itself from learning sufficient structure to approximate the
detector’s decision rule. This observation raises a fundamental question that has remained largely
unaddressed: to what extent are distortion-free watermarks secure against learning-based adver-
saries?

In this work, we study distortion-free watermarking through the lens of Probably Approximately
Correct (PAC) learning. Rather than focusing on key recovery or direct distributional distinguisha-
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bility, we analyze the learnability of the induced watermark detector. We focus on cyclic distortion-
free watermarking schemes, which are widely used in practice due to their robustness to edit-distance
perturbations and unknown alignment. We show that the alignment-based detectors associated with
these schemes form a hypothesis class of low complexity and are PAC learnable from polynomially
many labeled examples, such as detector queries. This provides a principled explanation for the vul-
nerability of cyclic distortion-free watermarks to learning-based attacks, despite their information-
theoretic invisibility at the distributional level.

We further show that this vulnerability is not inherent to distortion-free watermarking itself. By
leveraging recent automata-based formulations of watermarking (Wang & Shang, 2025) and classi-
cal hardness results from learning theory (Kearns et al., 1994), we demonstrate that more expressive
constructions based on probabilistic nondeterministic finite automata can induce watermark dis-
tributions that are computationally hard to PAC learn under standard cryptographic assumptions.
These results highlight learning complexity, rather than distributional distortion alone, as a central
determinant of watermark security.

Our contributions are as follows:

1. We formalize security against learning-based adversaries for distortion-free watermarking
by introducing PAC security of the detector as an additional desirable watermarking prop-
erty.

2. We prove that the cyclic distortion-free watermarking scheme introduced in Kuditipudi
et al. (2024)is PAC learnable from polynomially many labeled examples.

3. Building from Wang & Shang (2025), we demonstrate that distortion-free watermarking
can achieve the aforementioned PAC learning-based security by constructing automata-
based schemes whose induced distributions are computationally hard to PAC learn under
standard cryptographic assumptions.

2 RELATED WORK

Bias-based and hash-based watermarking. Early watermarking approaches for language mod-
els modify the decoding procedure by introducing a secret bias into token selection. A representa-
tive example is the k-gram–based watermarking scheme of Kirchenbauer et al. (2024), which uses
a keyed hash of the recent context to partition the vocabulary into a “green list” and a “red list”
and biases sampling toward green-list tokens. Detection proceeds by recomputing these partitions
and applying a statistical hypothesis test to the observed token frequencies. Related ideas appear
in earlier discussions of watermarking LLM outputs (Aaronson & Kirchner, 2022). While these
methods are simple and computationally efficient, they necessarily distort the model’s output dis-
tribution, making them vulnerable to statistical detection and to learning-based attacks that exploit
distributional artifacts.

Distortion-free watermarking. To avoid the inherent limitations of biased decoding, Kuditipudi
et al. (2024) introduce the paradigm of distortion-free watermarking, in which the watermark is
embedded into the sampling randomness rather than the model distribution. Their approach relies
on unbiased decoding procedures such as inverse transform sampling and exponential-minimum
sampling to preserve the exact output distribution of the base language model. Detection is achieved
via alignment-based tests that measure statistical dependence between the generated text and a secret
randomness sequence, enabling robustness to a wide range of edit-distance perturbations. While this
framework resolves the problem of distributional distortion, it leaves open the question of security
against adversaries with access to multiple samples or detector queries.

Automata-based formulations of watermarking. Recent work by Wang & Shang (2025) pro-
vides a unifying abstraction for watermarking schemes by modeling the generation of sampling ran-
domness as a probabilistic automaton. In this framework, a watermark corresponds to a stochastic
process whose emitted symbols are consumed by a distortion-free decoder. This perspective reveals
that many existing distortion-free schemes, including cyclic constructions, correspond to probabilis-
tic deterministic finite automata (PDFAs) with relatively simple structure. The authors argue that
watermark security is closely tied to the learnability of the underlying automaton and propose more
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expressive constructions based on probabilistic nondeterministic finite automata (PNFAs) to achieve
stronger security guarantees.

Learning-theoretic hardness of structured distributions. The hardness results underlying
automata-based watermarking draw on classical work in learning theory on the learnability of struc-
tured distributions. In particular, Kearns et al. (1994) study the problem of learning distributions
generated by probabilistic automata and establish connections to cryptographic hardness assump-
tions such as learning parity with noise. These results provide a foundation for arguing that certain
stochastic processes are not efficiently PAC learnable, even with access to evaluators.

3 PROBLEM DERIVATION

We follow Wang & Shang (2025) to define watermarking a language model. Let V denote a token
vocabulary where V∗ is the set of all finite token sequences over the vocabulary.

Definition 3.1 (Unwatermarked Language Model). An unwatermarked language model is a set of
conditional distributions p(· | x) over V , where x ∈ V∗ is a prefix (e.g. a prompt). We generate text
by sampling

yt ∼ p(· | xt), xt+1 = xt ◦ yt,
where ◦ denotes concatenation.

Definition 3.2 (Watermarking Scheme). A watermarking scheme for a language model consists of
a tuple

WM = (Gen,Det,K),
where

• K ← K denotes a secret key sampled according to a specified key distribution.

• GenK is a randomized watermarked generator that, given a prompt x ∈ V∗, induces a prob-
ability distribution over V∗ and produces a random output sequence. The key K determines
how sampling randomness is instantiated.

• DetK : V∗ → {0, 1} decides whether an input sequence was generated by GenK .

All watermarks are not created equal. Ideally, the watermark faithfully satisfies the properties from
Bagchi et al. (2025): soundness, completeness, distortion-freeness, and robustness. We will define
these properties formally.

Definition 3.3 (Soundness). A watermarking scheme is δ-sound if for any prompt x ∈ V∗ and any
random sequence Y ∼ p(· | x) generated by the unwatermarked language model,

Pr[DetK(Y ) = 1] ≤ δ.

Definition 3.4 (Completeness). A watermarking scheme is δ-complete if for every prompt x ∈ V∗,

Pr[DetK(GenK(x)) = 1] ≥ 1− δ.

Definition 3.5 (Distortion-Freeness). A watermarking scheme is distortion-free if for every prompt
x ∈ V∗ and every set A ⊆ V∗,

Pr[GenK(x) ∈ A] = Pr[Y ∈ A | Y ∼ p(· | x)] .

A watermarking scheme is ε-approximately distortion-free if for all prompts x ∈ V∗,

DTV(GenK(x), p(· | x)) ≤ ε,

where Kuditipudi et al. (2024) defines DTV as the total variation distances.

Definition 3.6 (Robustness to Transformations). Let T be a family of transformations τ : V∗ → V∗.
A watermarking scheme is δ-robust to T if for every prompt x ∈ V∗ and every τ ∈ T ,

Pr[DetK(τ(GenK(x))) = 1] ≥ 1− δ.
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We contribute an additional desirable watermarking property: PAC security of the detector, which
captures resistance to learning-based attacks. In this threat model, an adversary seeks to learn a
hypothesis that approximates the watermark detector’s decision rule (a function that reliably pre-
dicts whether a given text would be classified as watermarked) using polynomially many labeled
examples obtained from detector queries or observed outputs. While distortion-freeness guarantees
that individual watermarked samples are statistically indistinguishable from unwatermarked text, it
does not prevent the detector itself from being learned from labeled data. PAC security rules out
such attacks by ensuring that no efficient learner can approximate the detector with low error from
polynomially many examples.
Definition 3.7 (PAC Security Against Detector Learning). Let WM = (Gen,Det,K) be a water-
marking scheme. Fix a distribution D over V∗ and a key K ← K. Let the target labeling function
be

f⋆(x) = DetK(x).

We say that WM is (ε, δ)-PAC secure against detector learning with respect toD if for every learning
algorithm A that is given access to m = poly(|K|, 1/ε, log(1/δ)) i.i.d. labeled samples

{(xi, f
⋆(xi))}mi=1, xi ∼ D,

the hypothesis h← A satisfies
Pr[errD(h) ≤ ε] ≤ δ.

4 DISTORTION-FREE WATERMARKING

As a point of comparison, we formalize the red-green list watermarking paradigm introduced in
Kirchenbauer et al. (2024), which biases the sampling distribution in favor of a subset of the vocab-
ulary coined the “green list.”
Definition 4.1 (Red-Green List Watermarking). Let V be a vocabulary and let p(· | x) denote
the base language model distribution given prefix x ∈ V∗. A red-green watermarking scheme is
parameterized by:

• a secret key K,

• a context length r ≥ 1, and

• a hash function hK : Vr → {0, 1}|V|.

At generation step t, let xt−r:t−1 denote the most recent r tokens. The hash hK(xt−r:t−1) induces
a partition of the vocabulary into a green set

Gt = {v ∈ V : hK(xt−r:t−1)v = 1}
and a red set V \Gt.

The watermarked generator samples the next token yt from the biased distribution
pK(y | xt) ∝ p(y | xt) · exp

(
γ · 1{y ∈ Gt}

)
,

where δ > 0 is a fixed bias parameter.

Given a candidate text y = (y1, . . . , yn), the detector recomputes the green sets {Gt} using the
same key K and applies a statistical hypothesis test to determine whether the empirical fraction of
green tokens

1

n

n∑
t=1

1{yt ∈ Gt}

significantly exceeds its expectation under unwatermarked sampling.

We adopt the distortion-free watermarking framework of Kuditipudi et al. (2024) as our starting
point. Their key insight is that watermarking can be achieved without changing the language model’s
output distribution by embedding a secret correlation into the sampling randomness rather than
biasing token probabilities. The purpose of this section is to (i) restate the relevant components of
this framework in our notation and (ii) define a cyclic-key specialization that will be the object of our
learning-theoretic analysis in Section 5. All distributional and robustness guarantees in this section
follow the methodology of Kuditipudi et al. (2024).
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4.1 DISTORTION-FREENESS

Let V = {1, . . . , N} be a finite vocabulary and let ∆(V ) denote the probability simplex over V .
For µ ∈ ∆(V ) we write µ(i) for the mass on token i.
Definition 4.2 (Distortion-free decoder). A (possibly randomized) decoder Γ is distortion-free if for
every µ ∈ ∆(V ), the output distribution of Γ(µ) equals µ, i.e.,

∀y ∈ V, P[Γ(µ) = y] = µ(y).

Theorem 4.3 (Inverse Transform Sampling is distortion-free). Fix any permutation π of V . For any
µ ∈ ∆(V ) define the cumulative sums

Ck(µ) :=

k∑
j=1

µ(π(j)), k = 1, . . . , N, with C0(µ) := 0.

Let U ∼ Unif([0, 1]), and define the decoder
ΓITS(µ) := π(K) where K := min{k ∈ {1, . . . , N} : U ≤ Ck(µ)}.

Then ΓITS is distortion-free: for every µ ∈ ∆(V ) and every y ∈ V ,
P
[
ΓITS(µ) = y

]
= µ(y).

Proof. Fix µ ∈ ∆(V ) and y ∈ V . Let ky be the unique index such that π(ky) = y. By construction,
{ΓITS(µ) = y} ⇐⇒ {K = ky} ⇐⇒ {Cky−1(µ) < U ≤ Cky

(µ)}.
Since U ∼ Unif([0, 1]), the probability of this event is the length of the interval:

P
[
Cky−1(µ) < U ≤ Cky

(µ)
]
= Cky

(µ)− Cky−1(µ) = µ(π(ky)) = µ(y).

This holds for all y ∈ V , hence ΓITS is distortion-free.

Theorem 4.4 (Exponential-Minimum Sampling is distortion-free). Let E1, . . . , EN be i.i.d. Exp(1)
random variables. For any µ ∈ ∆(V ) define

ΓEXP(µ) := arg min
i∈V :µ(i)>0

Ei

µ(i)
,

with any deterministic tie-breaking rule (ties occur with probability 0). Then ΓEXP is distortion-
free: for every µ ∈ ∆(V ) and every y ∈ V ,

P
[
ΓEXP(µ) = y

]
= µ(y).

Proof. Fix µ ∈ ∆(V ) and y ∈ V with µ(y) > 0 (if µ(y) = 0 the claim is trivial). Define the scaled
variables

Zi :=
Ei

µ(i)
(i ∈ V, µ(i) > 0).

For t ≥ 0 and any i with µ(i) > 0,

P[Zi > t] = P[Ei > µ(i) t] = e−µ(i)t,

so Zi ∼ Exp(µ(i)), and the Zi are independent.

We compute the probability that y attains the minimum:
P[ΓEXP(µ) = y] = P[Zy < Zi ∀i ̸= y] .

Using the law of total probability by conditioning on Zy = t and independence,

P[Zy < Zi ∀i ̸= y] =

∫ ∞

0

P[Zi > t ∀i ̸= y | Zy = t] fZy
(t) dt

=

∫ ∞

0

∏
i̸=y

P[Zi > t]

 · fZy
(t) dt

=

∫ ∞

0

∏
i̸=y

e−µ(i)t

 · (µ(y)e−µ(y)t
)
dt

=

∫ ∞

0

µ(y) e−(
∑

i∈V µ(i))t dt.
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Since
∑

i∈V µ(i) = 1, the integral equals

µ(y)

∫ ∞

0

e−t dt = µ(y).

Thus P[ΓEXP(µ) = y] = µ(y) for all y ∈ V , proving distortion-freeness.

If Ui ∼ Unif(0, 1) i.i.d. and Gi := − log(− logUi) are i.i.d. Gumbel(0, 1), then
argmaxi{log µ(i) + Gi} has the same law as ΓEXP(µ) above. This is equivalent to the standard
Gumbel-max trick described in Aaronson & Kirchner (2022).

4.2 DETECTION GUARANTEES

In this subsection, we formally state detectability guarantees for the two distortion-free sampling
procedures introduced in Section 4.1: inverse transform sampling and exponential-minimum sam-
pling. The results in this subsection are adapted from the analysis of Kuditipudi et al., and are
restated here to make explicit the statistical power of alignment-based detectors used throughout
this paper.

Let GenK denote a distortion-free generator parameterized by a secret key K ∈ Σn, and let DetK be
the alignment-based detector defined in Section 4.3. Let x = (x1, . . . , xm) ∈ Vm be a length-m text
generated by GenK . We write α(x) for the watermark potential of the generated text, which mea-
sures the average strength of dependence between the sampled tokens and the underlying watermark
randomness (see Kuditipudi et al. (2024) for a precise definition).
Theorem 4.5 (Detectability under inverse transform sampling). Suppose GenK implements
distortion-free watermarking via inverse transform sampling. Then there exists a constant C > 0
such that, for any text x of length m generated by GenK ,

Pr

[
ScoreK(x) ≤ min

K′ ̸=K
ScoreK′(x)

]
≥ 1− 2n exp

(
−Cmα(x)2

)
.

Theorem 4.6 (Detectability under exponential-minimum sampling). Suppose GenK implements
distortion-free watermarking via exponential-minimum (Gumbel-max) sampling. Then there exists
a universal constant C ′ > 0 such that, for any text x of length m generated by GenK ,

Pr

[
ScoreK(x) ≤ min

K′ ̸=K
ScoreK′(x)

]
≥ 1− 2n exp

(
−C ′ m min{α(x), α(x)2}

)
.

Proofs of the above theorems are non-trivial and are provided in Kuditipudi et al. (2024). That said,
even if a watermarked is theoretically detectable, it still must also be robust to bounded deletions
from an adversary.

4.3 ROBUSTNESS GUARANTEES

Corollary 4.7 (Robust detectability under edit-distance perturbations). The detection guarantees of
Theorems 4.5 and 4.6 continue to hold under bounded edit-distance transformations. Specifically, if
x′ is obtained from x by e edit operations, then watermark detection succeeds provided the additive
increase in alignment score does not exceed the detection margin, as formalized in Proposition 4.9.

To bolster robustness, we follow Kuditipudi et al. (2024) in the cyclic interpretation of the key. In
practical settings, a watermarked text may be truncated and thus misaligned relative to the under-
lying randomness sequence used during generation. By reusing the key cyclically and allowing
the detector to search over all offsets, the alignment procedure can recover the correct correspon-
dence between text tokens and key symbols up to an unknown shift. This enables reliable detection
even when the beginning of the generated sequence is missing or when insertions and deletions are
present. Without cyclic reuse, detection would require exact positional synchronization between the
text and the key, which is brittle under even very small edit-distance attacks.
Definition 4.8 (Cyclic Key). Let Σ be a finite alphabet and let L ∈ N. A cyclic key is a string

K = (K[1],K[2], . . . ,K[L]) ∈ ΣL
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interpreted modulo cyclic shift. That is, for any offset s ∈ {0, 1, . . . , L − 1} and any index i ∈ N,
we define

K[s+ i] ≜ K[((s+ i− 1) mod L) + 1].

The infinite key stream induced by K is the periodic extension

(K[1],K[2], . . . ,K[L],K[1],K[2], . . . ),

and any two keys that differ by a cyclic rotation are considered equivalent.

4.3.1 ALIGNMENT SCORE

Let x = (x1, . . . , xn) ∈ Vn be a candidate text. Define an alignment cost between x and a length-
n key-expansion of K under an unknown offset. Concretely, let K(s)

1:n denote the length-n cyclic
expansion starting at offset s:

K
(s)
1:n =

(
K[s+ 1],K[s+ 2], . . . ,K[s+ n]

)
∈ Σn.

We assume a compatibility score
ϕ : V × Σ→ R≥0

that evaluates how consistent token xi is with key symbol K(s)
i .

To handle edits, we define an edit-distance-style dynamic program allowing insertions, deletions,
and substitutions on the text. Let cins, cdel ≥ 0 be insertion/deletion penalties. Define D(i, j) as the
minimum cost to align the prefix (x1, . . . , xi) to the prefix (K

(s)
1 , . . . ,K

(s)
j ):

D(0, 0) = 0, D(i, 0) = i cdel, D(0, j) = j cins,

and for i, j ≥ 1,

D(i, j) = min
{
D(i− 1, j) + cdel, D(i, j − 1) + cins, D(i− 1, j − 1) + ϕ(xi,K

(s)
j )

}
.

The alignment cost for a fixed offset s is CostK,s(x) = D(n, n). Finally, define the cyclic alignment
score

ScoreK(x) = min
s∈{1,...,L}

CostK,s(x).

Given a key K and threshold τ ≥ 0, define the detector

DetK(x) = 1{ScoreK(x) ≤ τ}.
Intuitively, watermarked text yields unusually small alignment cost under the correct key, whereas
non-watermarked text aligns no better than random.

We denote a robustness guarantee: small edit-distance corruption increases alignment cost by at
most an additive amount proportional to the number of edits, so detection persists under bounded
corruption rates. This is the same edit-distance robustness mechanism used in Kuditipudi et al.
(2024).
Proposition 4.9 (Robustness under edit operations). Fix K and consider any text x ∈ Vn. Let x′ be
obtained from x by applying e edit operations (insertions, deletions, substitutions), with substitution
cost upper bounded by cmax and insertion/deletion penalties bounded by cmax. Then

ScoreK(x′) ≤ ScoreK(x) + e cmax.

Consequently, if DetK(x) = 1 and e cmax ≤ τ − ScoreK(x), then DetK(x′) = 1 as well.

Proof. Each edit operation can be simulated in the dynamic program by taking at most one addi-
tional insertion, deletion, or substitution transition, incurring cost at most cmax. Therefore an align-
ment of x to the optimal key expansion can be converted to an alignment of x′ to the same expansion
with additional cost at most e cmax. Minimizing over offsets s yields the stated inequality.

The cyclic key reuse enhances robustness to cropping and edits by enabling the detector to search
over offsets and align subsequences. However, the induced low-complexity cyclic structure also
introduces a hypothesis class for learning under augmented access. Section 5 formalizes this via
PAC learnability results for cyclic detectors, while Section 6 contrasts this with more complex key
families based on probabilistic automata.
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5 PAC LEARNABILITY OF CYCLIC DISTORTION-FREE WATERMARKS

5.1 LEARNING MODEL AND TARGET

We analyze learnability in a setting where an adversary has oracle access to the watermark detector.
This is a standard supervised PAC model: there is an unknown distribution D over texts x ∈ X , and
an unknown target detector DetK⋆ ∈ Hcyc. The learner receives i.i.d. samples x1, . . . , xm ∼ D and
labels yi = DetK⋆(xi) obtained by querying the detector oracle. The goal is to output ĥ such that

Pr
x∼D

[
ĥ(x) ̸= DetK⋆(x)

]
≤ ε

with probability at least 1− δ over the learner’s sample.

5.2 CYCLIC ALIGNMENT DETECTORS AS A FINITE HYPOTHESIS CLASS

Fix an alphabet Σ and a key length L ∈ N. A cyclic key is a string K ∈ ΣL, interpreted modulo
cyclic shift.

Let ScoreK : X → Z be an integer-valued alignment score computable by a fixed dynamic program
(e.g. edit-distance-style alignment) between the input text and the cyclic key K.1 A threshold
detector associated with (K, τ) outputs

hK,τ (x) = 1{ScoreK(x) ≤ τ}.

We define the cyclic detector class

Hcyc = {hK,τ : K ∈ ΣL, τ ∈ T },

where T is a finite set of allowable thresholds. In particular, suppose there is a known bound B ∈ N
such that for all x ∈ X and all K ∈ ΣL,

ScoreK(x) ∈ {0, 1, . . . , B}. (1)

Then it is without loss of generality to take T = {0, 1, . . . , B}, and hence

|Hcyc| ≤ |Σ|L(B + 1). (2)

5.3 MAIN THEOREM AND PROOF

We prove that Hcyc is PAC learnable by empirical risk minimization (ERM). Because the true de-
tector belongs to the class, ERM achieves realizable PAC learning.

Theorem 5.1 (PAC learnability of cyclic distortion-free detectors under detector queries). Assume
equation 1 holds for some known B. Let Hcyc be defined as above, and suppose the target labels
are generated by some h⋆ = hK⋆,τ⋆ ∈ Hcyc (realizable case). Then for any ε, δ ∈ (0, 1), the ERM
learner overHcyc is a PAC learner with sample complexity

m ≥ 1

ε

(
ln |Hcyc|+ ln

1

δ

)
≤ 1

ε

(
L ln |Σ|+ ln(B + 1) + ln

1

δ

)
. (3)

Specifically, with probability at least 1 − δ over m i.i.d. samples from D, ERM outputs ĥ ∈ Hcyc

satisfying
Pr
x∼D

[ĥ(x) ̸= h⋆(x)] ≤ ε.

Proof. Define the true error of a hypothesis h ∈ Hcyc by

errD(h) = Pr
x∼D

[h(x) ̸= h⋆(x)],

1The specific recurrence is irrelevant for PAC learnability; we only use that ScoreK(x) is well-defined and
integer-valued.
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and the empirical error on a sample S = {(xi, yi)}mi=1 by

errS(h) =
1

m

m∑
i=1

1{h(xi) ̸= yi}, where yi = h⋆(xi).

Let ĥ be any ERM solution:
ĥ ∈ arg min

h∈Hcyc

errS(h).

Because the setting is realizable, h⋆ ∈ Hcyc and hence errS(h
⋆) = 0, which implies errS(ĥ) = 0

as well.

We will show that with probability at least 1 − δ, every h ∈ Hcyc with true error greater than ε
must incur nonzero empirical error. This implies that any hypothesis with zero empirical error (in
particular ĥ) must have true error at most ε.

Fix any h ∈ Hcyc with errD(h) > ε. For each example xi ∼ D, define the Bernoulli random
variable

Zi = 1{h(xi) ̸= h⋆(xi)}.
Then E[Zi] = errD(h) > ε, and

errS(h) =
1

m

m∑
i=1

Zi.

In particular, the event errS(h) = 0 is exactly the event
∑m

i=1 Zi = 0. Since the Zi are independent
and Pr[Zi = 1] = errD(h), we have

Pr[errS(h) = 0] = Pr[Z1 = 0, . . . , Zm = 0] =

m∏
i=1

(1−Pr[Zi = 1]) = (1−errD(h))m ≤ (1−ε)m ≤ e−εm.

Now apply a union bound over all hypotheses inHcyc:

Pr
[
∃h ∈ Hcyc with errD(h) > ε and errS(h) = 0

]
≤ |Hcyc| · e−εm.

If m ≥ 1
ε

(
ln |Hcyc|+ ln 1

δ

)
, then |Hcyc|e−εm ≤ δ. Hence, with probability at least 1 − δ, there

does not exist any hypothesis with true error > ε and empirical error 0. Since errS(ĥ) = 0, it
follows that errD(ĥ) ≤ ε, proving the claim.

Finally, substituting equation 2 into the bound on m yields equation 3.

Theorem 5.1 establishes statistical PAC learnability (sample complexity and generalization) of
cyclic alignment-based detectors under detector-query access. The runtime of naive ERM may
scale with |Hcyc|, which is exponential in L. Obtaining polynomial-time learnability requires addi-
tional algorithmic structure beyond finite-class arguments (e.g., efficient key reconstruction exploit-
ing cyclic constraints), and is separable from PAC learnability.

6 HARDNESS OF PROBABILISTIC-AUTOMATA-BASED WATERMARKS

Section 5 showed that cyclic distortion-free watermarking schemes induce detector classes of low
complexity and are PAC learnable from polynomially many labeled examples. In this section, we
show that this learnability is not inherent to distortion-free watermarking itself. Instead, it arises
from the restricted structure of cyclic keys. By moving to more expressive stochastic processes
(specifically, probabilistic automata) we obtain distortion-free watermarking schemes whose in-
duced distributions are not efficiently PAC learnable under standard cryptographic assumptions.

6.1 LEARNING MODEL AND SECURITY GOAL

We adopt a distribution-learning formulation consistent with classical results on learning probabilis-
tic automata. Let X denote a finite output alphabet and let {DK}K∈K be a family of distributions
over X ∗ induced by a watermarking scheme with key K.

A learner is given:
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• i.i.d. samples x1, . . . , xm ∼ DK , and
• evaluator access to DK , i.e., an oracle that returns DK(x) for any x ∈ X ∗.

The learner’s goal is to output a hypothesis distribution D̂ such that

KL(DK ∥ D̂) ≤ ε

with probability at least 1− δ.

If an adversary can efficiently learn DK in this sense, then it can approximate likelihoods under the
watermark, emulate alignment-based detectors, and distinguish watermarked from unwatermarked
text. Thus, PAC hardness of learning {DK} implies security against learning-based adversaries.

6.2 HARDNESS ASSUMPTION

Our hardness result relies on the standard assumption that learning parity with noise is computation-
ally intractable.
Assumption 6.1 (Sparse Learning Parity with Noise (Sparse LPN)). There is no polynomial-time
algorithm that PAC learns k-sparse parity functions over {0, 1}n under random classification noise,
for k = ω(1).

This assumption is widely used in cryptography and learning theory and underlies hardness results
for learning structured distributions.(Blum et al., 1993)

6.3 PROBABILISTIC-AUTOMATA-BASED WATERMARKING

We now describe a class of watermarking schemes whose randomness is generated by a probabilistic
nondeterministic finite automaton (PNFA). This construction follows the framework of Wang and
Shang and generalizes cyclic-key schemes.

A PNFA AK = (Q,Σ, δ, π) consists of:

• a finite state set Q,
• an emission alphabet Σ,
• a probabilistic transition function δ, and
• a state-dependent emission distribution π.

The automaton generates an infinite sequence of symbols Z1, Z2, . . . ∈ Σ by stochastic transi-
tions. These symbols are consumed by a distortion-free decoder (Section 4.1) to produce text whose
marginal distribution exactly matches the base language model.

Crucially, the automaton’s transition structure encodes a hidden parity function with additive noise.
As a result, the induced output distribution DK embeds a noisy parity instance into its stochastic
dependencies, while remaining marginally indistinguishable from the unwatermarked model.

6.4 MAIN HARDNESS RESULT

We now state our main theorem.
Theorem 6.2 (PAC Hardness of Automata-Based Watermarks). Assuming Sparse LPN, there is no
polynomial-time algorithm that PAC learns the distribution family {DK} induced by probabilistic-
automata-based distortion-free watermarking schemes, even with evaluator access.

Proof. Suppose for contradiction that there exists a polynomial-time learner L that PAC learns
{DK} in KL divergence. We construct an algorithm B that uses L to learn sparse parity functions
with noise, contradicting the Sparse LPN assumption.

Let s ∈ {0, 1}n be a secret k-sparse parity vector. Using standard constructions from probabilistic
automata theory, we define a PNFA As whose stochastic transitions encode the parity ⟨s, x⟩ with
independent noise. The resulting emission process induces a distribution Ds over output sequences.
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Figure 1: Distribution of normalized detection scores for unwatermarked as compared to water-
marked text (500 open-ended prompts)

By assumption, L can, with polynomially many samples and evaluator queries, produce a hypothe-
sis D̂ such that KL(Ds ∥ D̂) ≤ ε. From such a hypothesis, B can approximate likelihood ratios of
carefully chosen events whose probabilities depend on the underlying parity function. Standard ar-
guments show that this suffices to recover a hypothesis that predicts ⟨s, x⟩ with nontrivial advantage
over random guessing, yielding a polynomial-time algorithm for Sparse LPN.

This contradicts the assumed hardness of Sparse LPN. Therefore, no such learner L exists.

7 EXPERIMENTS

In this section we present preliminary experiments evaluating the distortion-free watermarking
scheme on the discrete diffusion model LLaDA (Nie et al., 2025). We defer modifications to the
aforementioned watermarking schemes for discrete diffusion models (as opposed to an autoregres-
sive model) to Bagchi et al. (2025). We will only show results for the the exponential minimum sam-
pling scheme. In Figure 1 from my prior work in Bagchi et al. (2025), we show that the distortion-
free watermarking scheme introduced in Kuditipudi et al. (2024); Aaronson & Kirchner (2022) is
indeed detectable. In 2 and 3, we assess distortion-freeness and completeness respectively. We find
that the watermark is indeed distortion-free (as perplexity does not increase) and it is detectable. Fur-
ther experiments should implement the other optimizations from Kuditipudi et al. (2024) to improve
results.

8 CONCLUSION

In this work, we studied the security of distortion-free language model watermarking through the
lens of PAC learning. Although distortion-free schemes achieve information-theoretic invisibility by
preserving the exact output distribution of the underlying language model, we showed that this guar-
antee alone does not protect against learning-based adversaries. Focusing on cyclic distortion-free
watermarking schemes with alignment-based detectors, we proved that the induced detector class
has low complexity and is PAC learnable from polynomially many labeled examples under natu-
ral adversary models, such as detector-query access. This result provides a principled explanation
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Figure 2: Perplexity comparison with and without watermark on LLaDA

for why cyclic watermarking schemes remain vulnerable despite strong statistical detectability and
robustness guarantees.

Crucially, we demonstrated that this vulnerability is not inherent to distortion-free watermarking
itself. By leveraging probabilistic-automata-based constructions and standard cryptographic hard-
ness assumptions, we showed that more expressive watermarking schemes can induce distributions
that are computationally hard to PAC learn, even with evaluator access. This establishes a sharp
separation between cyclic and automata-based distortion-free watermarks and highlights learning
complexity as a central determinant of watermark security. Our findings suggest that future water-
marking designs should prioritize the unlearnability of the underlying stochastic process, positioning
learning theory as a foundational tool for reasoning about robustness and security in language model
watermarking
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Figure 3: Completeness comparison with and without watermark on LLaDA

13



REFERENCES

Scott Aaronson and Hendrik Kirchner. Watermarking gpt outputs. Lecture slides
https://www.scottaaronson.com/talks/watermark.ppt, 2022. Accessed: 2025-10-13.

Avi Bagchi, Akhil Bhimaraju, Moulik Choraria, Daniel Alabi, and Lav R. Varshney. Watermarking
discrete diffusion language models, 2025. URL https://arxiv.org/abs/2511.02083.

Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Cryptographic primitives
based on hard learning problems. In Proceedings of the 13th Annual International Cryptology
Conference (CRYPTO), pp. 278–291. Springer, 1993.

Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. Schapire, and Linda
Sellie. On the learnability of discrete distributions. In Proceedings of the 26th Annual ACM
Symposium on Theory of Computing, pp. 273–282, 1994.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A wa-
termark for large language models, 2024. URL https://arxiv.org/abs/2301.10226.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models, 2024. URL https://arxiv.org/abs/2307.15593.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

Yangkun Wang and Jingbo Shang. Watermarks for language models via probabilistic automata,
2025. URL https://arxiv.org/abs/2512.10185.

14

https://arxiv.org/abs/2511.02083
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2307.15593
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2512.10185

	Introduction
	Related Work
	Problem Derivation
	Distortion-Free Watermarking
	Distortion-Freeness
	Detection Guarantees
	Robustness Guarantees
	Alignment score


	PAC Learnability of Cyclic Distortion-Free Watermarks
	Learning Model and Target
	Cyclic Alignment Detectors as a Finite Hypothesis Class
	Main Theorem and Proof

	Hardness of Probabilistic-Automata-Based Watermarks
	Learning Model and Security Goal
	Hardness Assumption
	Probabilistic-Automata-Based Watermarking
	Main Hardness Result

	Experiments
	Conclusion

